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ON THE CONTINUITY OF THE HARDY-LITTLEWOOD

MAXIMAL FUNCTION

Young Ja Park*

Abstract. It is concerned with the continuity of the Hardy-Little
wood maximal function between the classical Lebesgue spaces or
the Orlicz spaces. A new approach to the continuity of the Hardy-
Littlewood maximal function is presented through the observation
that the continuity is closely related to the existence of solutions
for a certain type of first order ordinary differential equations. It is
applied to verify the continuity of the Hardy-Littlewood maximal
function from Lp(Rn) to Lq(Rn) for 1 ≤ q < p < ∞.

This paper concerns with the Hardy-Littlewood maximal operator
M :

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy.

Here B(x, r) is the Euclidean ball of radius r centered at x and f is
a locally integrable function. This operator plays an important role in
studying the differentiability properties of functions, singular integrals,
and it also has numerous applications to the theory of partial differential
equations.

One of the most well-known theorems for the Hardy-Littlewood max-
imal operator would be the continuity property from the Lebesgue space
Lp(Rn) into itself, 1 < p ≤ ∞. This paper investigates the continuities
of the Hardy-Littlewood maximal function on different Lebesgue spaces
especially, from Lp(Rn) to Lq(Rn) for 1 ≤ q < p < ∞. For this, it
is pointed out that the continuity is closely related to the existence of
solutions for a certain type of ordinary differential equations, which can
be stated as follows:

Proposition 1. Let Ω be a subset of Rn(possibly the whole space),
and α, β be any absolutely continuous increasing functions on (0,∞).
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Suppose that there exists a solution y(·) of increasing function on (0,∞)
satisfying the first order ODE

y′ =
α′(x)

β′(y)(x− y)
, ′ ≡ d

dx
(0.1)

for almost every x > 0 and y(0+) = 0, then we have∫
Ω
α(Mf(x))dx ≤ C

∫
Ω
|f(x)|β(|f(x)|)dx

for some positive constant C independent of f .

The proof is presented at the end of the paper. The classical theory
of the first order ODE says that for any x0 and y0 with 0 < y0 < x0,
the characteristic ODE (0.1) has a unique (local) solution that passes
through a point (x0, y0), and persists unless the graph touches with the
line y = x or β′(y) = 0. In particular, if α′(x) > 0 and β′(y) > 0 for
all x, y > 0 (with β′(0) = 0), then the slope y′(x) of the flow (x, y(x)) is
always positive as far as it stays in the region

{(x, y) |x, y > 0, y < x},

and it blows up when it touches the line segment y = x or y = 0. Here
is an application of Proposition 1.

Theorem 1. For 1 ≤ q < p < ∞ or 1 < p = q, we have∫
Rn

|Mf(x)|qdx ≤ C

∫
Rn

|f(x)|pdx

for some positive constant C independent of f .

Proof. It suffices to prove the existence of solution y of increasing
function for the characteristic ODE:

y′ =
1

2p
xq−1

yp−2(x− y)
(0.2)

with the condition y(1) = 1
2 . The choices of the multiplicative constant

1
2p and the point (x, y) = (1, 12) are only for convenience in order to make
the flow stay inside the region R ≡ {(x, y) : x, y > 0, x < y}. When
p = q > 1, the characteristic ODE (0.2) is a homogeneous equation
whose solution is just y(x) = x

2 (a singular solution). In this case, the
result coincides with the classical continuity of M : Lp(Rn) → Lp(Rn).
So the essential part of the proof corresponds to the case when q < p.
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For x ≥ 1, the solution y1 of the ODE (0.2) obeys the homogeneous
ordinary differential inequality

y′ ≤ 1

2p
xp−1

yp−2(x− y)
, y(1) =

1

2
.(0.3)

Therefore we compare this differential inequality (0.3) with the homo-
geneous ordinary differential equation

y′ =
1

2p
xp−1

yp−2(x− y)
, y(1) =

1

2
(0.4)

to observe that a (local) solution y1 of (0.2) satisfies

y1(x) ≤ y0(x), x ≥ 1,

where y0 is a unique solution of (0.4). That is, y1(x) ≤ x
2 for x ≥ 1.

Therefore the solution of the characteristic ODE (0.2) never blows up
on [1,∞).

Now, we examine non-blow-up-ness of the solution y1 of the charac-
teristic ODE (0.2) with the terminal condition y1(1) =

1
2 on the interval

(0, 1]. As in the above, solving the homogeneous ordinary differential
inequality

y′ ≥ 1

2p
xq−1

yq−2(x− y)
,

we have

y1(x) ≥
x

2
for 0 < x ≤ 1. This says that the graph of y1(·) does not meet the x-axis
on the interval (0, 1). The positivity of the derivative y′1 yields that the
solution y1(·) is an increasing function on the interval (0, 1), and so the
graph of y1(·) does not meet the line y = x on (0, 1). In fact, suppose
that the graph of the solution y1 gets into touch with the straight line
y = x. Let x0 be the nearest point from 1 having y1(x0) = x0. Then
considering the right hand side of (0.2), the slope of y1(x) goes to infinity
and the flow (x, y1(x)) proceeds to the line y = x as x goes to x0 from the
right side, which is impossible for continuous and increasing functions
whose graphs are located under the line y = x. In all, the graph of y1 lies
between the two straight lines y = x and y = x

2 , and so lim
x→0+

y1(x) = 0.

The existence of the solution of increasing function on (0,∞) for (0.1)
is now completed.

Proof of Proposition 1. Let Φ : R+ → R+ denote the solution of
increasing function satisfying the characteristic ODE (0.1). We define
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ft(x) ≡ f(x) if |f(x)| > Φ(t), and ft(x) = 0, otherwise. Then from the
fact that M is weak (1, 1), we have∫

Ω
α(Mf(x))dx ≤

∫ ∞

0
α′(t) |{x ∈ Ω |Mft(x) > t− Φ(t)}| dt

≤ C

∫ ∞

0

α′(t)

t− Φ(t)

(∫
Ω
|ft(x)|dx

)
dt

= C

∫
Ω
|f(x)|

(∫ Φ−1(|f(x)|)

0

α′(t)

t− Φ(t)
dt

)
dx

= C

∫
Ω
|f(x)|β(|f(x)|)dx

for some positive constant C > 0. The last equality follows from the

fact that α′(t)
t−Φ(t) = {β(Φ(t))}′.

Remark 2. The characteristic ODE (0.1) can be replaced by the first
order ordinary differential inequality

y′β′(y) ≥ α′(x)

x− y
.
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